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This paper investigates the three-dimensional stability of a Lamb–Chaplygin colum-
nar vertical vortex pair as a function of the vertical wavenumber kz , horizontal
Froude number Fh, Reynolds number Re and Schmidt number Sc. The horizontal
Froude number Fh (Fh = U/NR, where U is the dipole travelling velocity, R the
dipole radius and N the Brunt–Väisälä frequency) is varied in the range [0.033,∞[
and three set of Reynolds-Schmidt numbers are investigated: {Re = 10 000, Sc = 1},
{Re = 1000, Sc = 1}, {Re = 200, Sc = 637}. In the whole range of Fh and Re, the
dominant mode is always antisymmetric with respect to the middle plane between the
vortices but its physical nature and properties change when Fh is varied. An elliptic
instability prevails for Fh > 0.25, independently of the Reynolds number. It manifests
itself by the bending of each vortex core in the opposite direction to the vortex periph-
ery. The growth rate of the elliptic instability is reduced by stratification effects but
its spatial structure is almost unaffected. In the range 0.2 < Fh < 0.25, a continuous
transition occurs from the elliptic instability to a different instability called zigzag
instability. The transitional range Fhc = 0.2–0.25 is in good agreement with the value
Fh = 0.22 at which the elliptic instability of an infinite uniform vortex is suppressed by
the stratification. The zigzag instability dominates for Fh 6 0.2 and corresponds to a
vertically modulated bending and twisting of the whole vortex pair. The experimental
evidence for this zigzag instability in a strongly stratified fluid reported in the first
part of this study (Billant & Chomaz 2000a) are therefore confirmed and extended.
The numerically calculated wavelength and growth rate for low Reynolds number
compare well with experimental measurements.

The present numerical stability analysis fully agrees with the inviscid asymptotic
analysis carried out in the second part of this investigation (Billant & Chomaz 2000b)
for small Froude number Fh and long wavelength. This confirms that the zigzag
instability is related to the breaking of translational and rotational invariances. As
predicted, the growth rate of the zigzag instability is observed to be self-similar with
respect to the variable Fhkz , implying that the maximum growth rate is independent
of Fh while the most amplified dimensional wavenumber varies with N/U. The
numerically computed eigenmode and dispersion relation are in striking agreement
with the analytical results.

† Present address: Météo–France CNRM Toulouse, 42 avenue Coriolis, F–31057 Toulouse,
France.
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1. Introduction

In the present paper, we analyse numerically the three-dimensional linear stability
of a vertical columnar vortex pair in a stably stratified fluid mainly as a function of
the vertical wavenumber and the horizontal Froude number.

This investigation is motivated by recent experimental observations of a zigzag
instability operating on a vertical columnar vortex pair in a strongly stratified fluid
(Billant & Chomaz 2000a, referred to hereinafter as part 1). From an initial vertically
coherent state, the zigzag instability bends and twists the vortex pair as a whole,
leading ultimately to the formation of decoupled horizontal layers in which the flow
is still a dipole. The layered structure exhibits a well-defined vertical scale which is
dynamically determined and not initially imposed. Since this instability is distinct from
the Crow and elliptic instabilities observed to destabilize vortex pairs in homogeneous
fluids, the zigzag mode represents a new class of instability which has no counterpart
in the homogeneous problem.

Such a type of instability is of major interest since it could be generic and operate
on any vertically uniform strongly stratified flow. This instability limits the vertical
coherence of the flow and therefore may explain and predict the vertical size of
pancake structures widely observed in strongly stratified flows (Lin & Pao 1979;
Riley, Metcalfe & Weissman 1981; Hopfinger 1987; Herring & Métais 1989; Métais
& Herring 1989; Browand, Guyomar & Yoon 1987; Lin et al . 1992; Chomaz et al .
1993; Flór & van Heijst 1996; Fincham, Maxworthy & Spedding 1996; Spedding,
Browand & Fincham 1996; Kimura & Herring 1996; Spedding 1997; Bonnier, Eiff
& Bonneton 2000).

In the light of the experimental observations of the zigzag instability, we have
developed a general theoretical approach to account for this instability (Billant &
Chomaz 2000b, hereinafter referred to as part 2). By means of an asymptotic inviscid
analysis for small horizontal Froude number, Fh = U/(NR), where U is the dipole
propagating velocity, N the Brunt–Väisälä frequency and R the dipole radius, we
have demonstrated the existence of a long-wavelength instability that originates from
the breaking of translational and rotational invariances. The unstable perturbations,
which are sinusoidally modulated along the vertical, involve both a lateral slide and a
rotation of the whole vortex pair. This instability thus bends and twists the columnar
vortex pair as a whole as indeed is observed in the experiments.

An important theoretical prediction is that maximum growth will be achieved
for a dimensional vertical wavelength proportional to U/N in the inviscid limit.
Unfortunately, it has not been possible to confirm this vertical scaling in the laboratory
experiment (part 1) because the low Froude numbers where the zigzag instability is
observed are dominated by viscous effects. Indeed, in laboratory experiments, low
Froude numbers may be achieved only by lowering the characteristic velocity U since,
in practice, the Brunt–Väisälä frequency and the dipole size are bounded. The low
Froude number regime is therefore always associated with low Reynolds numbers. In
contrast, such a limitation is not encountered in a numerical stability analysis since the
Froude and Reynolds numbers can easily be varied independently over a wide range.

The goal of the present study is three-fold:
(i) General study of the influence of a stable stratification on the three-dimensional

stability of columnar vertical vortices for arbitrary horizontal Froude numbers. A
similar stability analysis of columnar vertical vortex arrays has been recently carried
out by Potylitsin & Peltier (1998). Stratification effects were found to be stabilizing
but only weak stratifications were considered.
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(ii) Validation and extension of the asymptotic analysis (part 2) to finite Froude
numbers and wavenumbers.

(iii) Comparison with the experimental results (part 1).
The paper is organized as follows. In § 2, we outline the Lamb–Chaplygin basic

state and the linearized perturbation equations. The numerical method used to solve
the stability equations is described in § 3. In § 4, the most unstable normal mode of the
Lamb–Chaplygin vortex pair is determined as a function of the vertical wavenumber
kz for Froude numbers in the range [0.033,∞[ and for three Reynolds–Schmidt
number sets: {Re = 10 000, Sc = 1}, {Re = 1000, Sc = 1} and {Re = 200, Sc = 637}.
The symmetry of the eigenmodes is first discussed in § 4.1. Growth rates are presented
in § 4.2 as a function of the vertical wavenumber kz , Froude number Fh and Reynolds
number Re. Eigenmodes of the elliptic and zigzag instabilities are described in §§ 4.3
and 4.4. The transition from the elliptic to the zigzag instability when the Froude
number is varied is characterized in § 4.5. Section 5 is devoted to a full comparison with
the theoretical results, growth rates (§ 5.1) and spatial eigenmodes (§ 5.2), obtained in
part 2. Finally, a comparison between numerical and experimental results is provided
in § 6.

2. Problem formulation
In the following, we use either Cartesian coordinates (x, y, z) or cylindrical co-

ordinates (r, θ, z) with x = r cos θ and y = r sin θ and z pointing in the vertical
direction.

The governing equations are the Navier–Stokes equation within the Boussinesq
approximation

Du

Dt
= − 1

ρ0

∇P − g ρ
′

ρ0

ez + ν∆u, (2.1a)

together with the incompressibility condition

∇ · u = 0, (2.1b)

and the density equation

Dρ′

Dt
+ uz

∂ρ̄

∂z
= D∆ρ′, (2.1c)

where u = (ux, uy, uz) is the velocity vector in Cartesian coordinates, P the pressure, g
the gravity, ez the unit vector in the positive z-direction, ν the kinematic viscosity, and
D the molecular diffusivity of the stratifying agent. The total density ρ is expressed
as the sum of a constant reference density ρ0, a linear mean density profile ρ̄(z) and
a perturbation density ρ′(x, t)

ρ(x, t) = ρ0 + ρ̄(z) + ρ′(x, t). (2.2)

As in part 2, the Lamb–Chaplygin dipole (Lamb 1932; Batchelor 1967; Meleshko
& van Heijst 1994) is used as a basic state. This exact solution of the two-dimensional
Euler equations describes a pair of counter-rotating vortices. The streamfunction ψ0

and vertical vorticity ωz0 = ∆ψ0 of this solution expressed in a co-moving frame of
reference are

ψ0(r, θ) = − 2UR

µ1J0(µ1)
J1

(
µ1

r

R

)
sin θ, ωz0 = − µ

2
1

R2
ψ0 (r 6 R), (2.3a)
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ψ0(r, θ) = −Ur
(

1− R2

r2

)
sin θ, ωz0 = 0 (r > R). (2.3b)

where U and R are the propagating velocity and the radius of the dipole, J0 and J1

are the zero and first-order Bessel functions and µ1 = 3.8317 is the first zero of J1.
The associated horizontal velocity is given by uh0 = −∇× (ψ0ez). The vertical velocity
uz0 and density perturbation ρ′0 of the basic state are identically zero.

In what follows, R is taken as the length unit and the advective timescale R/U is
taken as the time unit. The pressure is rescaled by ρ0U

2 and the density by ρ0U
2/(gR).

For simplicity, the same notation is kept for the dimensionless variables.
The two-dimensional basic state (2.3) is subjected to infinitesimal three-dimensional

perturbations governed by the non-dimensional linearized equations for the pertur-
bation velocity ũ, vorticity ω̃ = ∇× ũ, pressure p̃ and density ρ̃′

∂ũ

∂t
+ ωz0ez × ũ+ ω̃ × uh0 = −∇(p̃+ uh0 · ũ)− ρ̃′ez +

1

Re
∆ũ, (2.4)

∇ · ũ = 0, (2.5)

∂ρ̃′

∂t
+ uh0 · ∇hρ̃′ − 1

F2
h

ũz =
1

ScRe
∆ρ̃′, (2.6)

where ∇h is the horizontal component of ∇, Re = UR/ν, Sc = ν/D, Fh = U/RN

and N =
√−(g/ρ0)∂ρ̄/∂z. The viscous diffusion of the basic state is omitted as

classically done in stability analysis (Drazin & Reid 1981). This reasonably describes
the dynamics of a real flow if the growth rate of three-dimensional instabilities is
large compared to viscous damping of the basic flow.

Since the basic state is uniform along the z-axis, the perturbation may be expressed
by a normal mode

[ũ; ω̃; p̃; ρ̃′](x, y, z, t) = [u;ω; p; ρ′](x, y, t) eikzz + c.c., (2.7)

where kz is the vertical wavenumber and c.c. denotes the complex conjugate. In this
case, (2.4)–(2.6) become

∂u

∂t
+ωz0ez × u+ω × uh0 = −∇h(p+ uh0 · u)− [ikz(p+ uh0 · u) + ρ′]ez+

1

Re
(∆hu− k2

zu),

(2.8)

∇h · uh + ikzuz = 0, (2.9)

∂ρ′

∂t
+ uh0 · ∇hρ′ − 1

F2
h

uz =
1

ScRe
(∆hρ

′ − k2
zρ
′), (2.10)

where uh is the horizontal component of u and ∆h the horizontal Laplacian.

3. Numerical method
In order to study the three-dimensional stability of the vortex pair, we shall not

explicitly determine the matrix operator deriving from (2.8)–(2.10) and compute all
its eigenmodes as, for instance, in the pioneering work of Pierrehumbert & Widnall
(1982) on three-dimensional instabilities of a mixing layer. Instead, we shall determine
only the eigenmode with the largest growth rate by integrating numerically (2.8)–(2.10)
for each kz value. The perturbation velocity u(x, y, t = 0) is first initialized with a
divergence-free white noise while the perturbation density field ρ′(x, y, t = 0) is left to
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zero. Then, by integrating the linear equations (2.8)–(2.10) for a sufficiently long time,
the leading eigenmode emerges after a transient (Goldhirsch, Orszag & Maulik 1987;
Edwards et al . 1994; Mamun & Tuckerman 1995). Therefore, for a given vertical
wavenumber kz , the velocity and density perturbation evolve asymptotically for large
times as

lim
t→∞[u; ρ′](x, y, t) = [U ;D](x, y) eσt, (3.1)

where σ is the eigenvalue of the leading eigenmode, U (x, y) the velocity eigenfunction
with kinetic energy normalized to unity and D(x, y) the associated density eigen-
function. Implementation of a more sophisticated method involving the use of a
higher-dimensional Krylov space (Edwards et al . 1994) is not necessary here since we
are only interested in the leading eigenmode.

To integrate numerically the system (2.8)–(2.10) for a given kz , a pseudo-spectral
scheme has been implemented in Cartesian coordinates with periodic boundary con-
ditions. A three-dimensional code has been adapted to linear stability analyses by
Brancher (1996) and successfully validated in the case of instabilities in jets (Brancher,
Chomaz & Huerre 1996; Delbende, Chomaz & Huerre 1998) and Stuart’s vortices
(Brancher 1996). In the present investigation, the code has been modified to take
into account a density field and the associated buoyancy force. The main steps of the
numerical method are outlined below.

Variables in (2.8)–(2.10) are expressed in Fourier space by application of the two-
dimensional Fourier transform, for example,

û(kx, ky, t) =

∫∫
u(x, y, t) e−i(kxx+kyy) dxdy, (3.2)

where kx and ky are the horizontal components of the total wavenumber k =
(kx, ky, kz). In spectral space, the governing equations (2.8)–(2.10) are replaced by

∂ρ̂′

∂t
= −ikûh0ρ

′ +
1

F2
h

ŵ − k2

ScRe
ρ̂′. (3.4)

The tensor P(k) with Cartesian components Pij ≡ δij−kikj/k2 designates the projection
operator on the space of solenoidal fields so as to enforce the divergence equation
û · k = 0. The terms (u × ωz0ez + uh0 × ω) in (3) and uh0ρ

′ in (3.4) are evalu-
ated in the physical space. The classical 2/3 truncation rule is used for de-aliasing
in Fourier space. The time integration is performed with the second-order finite-
difference Adams–Bashforth numerical scheme. The dissipative terms are integrated
exactly. In most simulations, the periodic square box of size L = 9 is made up of
256×256 collocation points equally spaced on a Cartesian mesh with δx = δy = 0.035.
For large Froude number values Fh > 0.1, the time increment is δt = 0.0019. For
Fh = 0.05 and Fh = 0.033, δt is lowered to δt = 0.001 and δt = 0.00075, respectively.
In some cases, the number of collocation points has been increased to 512× 512 to
check the convergence.

Purely real growth rate is retrieved by the formula

σ = lim
t→∞

1

2

d lnE

dt
, (3.5)

where E = ū2
x+ ū2

y + ū2
z is the kinetic energy perturbation, the overbar denoting spatial
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L = 6 L = 9 L = 12

L L L

δx 6 12 δx 9 18 δx 12 24

0.023 0.6251 0.6002 0.035 0.6031 0.5932 0.047 0.5721 0.5672

0.012 0.6252 0.018 0.6072 0.023 0.6002

Table 1. Growth rates for a typical case: Fh = 0.1, kz = 4 and {Re = 10 000, Sc = 1} as a function
of the box size L and mesh size δx. The superscript indicates the number of collocation points:
1: 256× 256, 2: 512× 512.

integration over the square computational domain. To reach an asymptote in this
formula and achieve an accuracy for σ of at least three significant figures, a typical
integration time of 15 time units (turn over time) is necessary. This integration time
is increased when the leading eigenvalue is not well separated from the others. The
spatial structure of the corresponding eigenmode is obtained after normalizing the
velocity and density fields of the last time-step by its kinetic energy.

In practice, once an eigenmode has been determined for a particular set of values
{Fh, Re, Sc, kz}, the parameter space can be explored by continuation to speed up the
convergence toward the most unstable normal mode. Specifically, instead of using
white noise, a simulation can be initialized by the eigenmode obtained from a previous
simulation for slightly different parameters {Fh, Re, Sc, kz}.

Before turning to the results, it is necessary to give the reasons for the choice
of the numerical parameters and the accuracy of the present method. The box and
mesh sizes chosen are, in fact, a compromise leading to an optimal convergence and
accuracy of the growth rate values for the reasonable 256×256 spectral discretization.
The first constraint is that the box size should be large so as to minimize the effect of
the periodic boundary conditions. However, for a fixed number of collocation points,
increasing the box size decreases the resolution. Thus, there exists a compromise
between the two opposing requirements: large box size and fine resolution. Three
computational domain sizes have been tested L = 6, L = 9 and L = 12 for a typical
case. The computed growth rates for each domain size are given in table 1. The
respective influences of the periodic boundary conditions and of the resolution have
been checked by doubling the box size, the resolution being fixed and, conversely, by
doubling the resolution and keeping the box size constant (in each case, the number
of collocation points is increased four times). As seen in table 1, the box size L = 9
is the best compromise since both tests lead to a relative variation of the growth rate
value of less than 1.7%. In contrast, the box size L = 6 is too small because doubling
the box size leads to a relative variation of the growth rate value of 4%. Similarly,
the large box L = 12 together with 256 × 256 collocation points does not provide
a sufficient resolution because halving the mesh size leads to a 5% variation of the
growth rate.

The convergence of the growth rates with the numerical parameters is, in fact,
especially slow at low Froude numbers (Fh < 0.25). In this regime, the vorticity of the
numerically computed eigenmode exhibits a sharp variation at the dipole boundary
r = 1 as predicted from the asymptotic theory (part 2). Accordingly, a high resolution
is needed to sample these regions satisfactorily. In addition, the velocity fields of the
neutral modes from which the instability derives for small Froude numbers and small
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L = 9

L

δx 9 18

0.035 1.2206631 1.2206662

0.018 1.2214772

Table 2. Same as table 1 for the case: Fh = ∞, Re = 10 000 and kz = 4. Only the box size L = 9
has been tested in this case.

wavenumbers decrease only algebraically fast as r →∞: the translational mode in
the y-direction decreases as 1/r3, while the rotational mode decreases as 1/r2 (part 2).
Therefore, a large box is required for the confinement to have a negligible influence
on the instability. These are the reasons why a high discretization (256 × 256) and
large box (L = 9) leads to only a 1.7% accuracy at low Froude numbers. In contrast,
for higher Froude numbers (Fh > 0.25), the vorticity of the leading eigenmode is
spatially smooth and its velocity is localized so that a far better accuracy is achieved.
As seen in table 2, for Fh = ∞, there is a relative variation of 0.07% of the growth
rate when the mesh size is halved and 0.0002% when the box size L = 9 is doubled.
In this case, a smaller box and a coarser grid could have been used but the same sizes
have been kept throughout the study for coherence.

Finally, we should remark that more difficulties have been encountered during the
computations at small Froude numbers (Fh 6 0.25) than at large Froude numbers
(Fh > 0.33). At low Froude numbers, weak small-scale distortions are sometimes
apparent in the computed eigenmodes, especially in the vorticity and vertical velocity
fields. When this happens, we have systematically checked that these distortions are
smoothed out when a higher resolution (512 × 512) is employed. However, since
the growth rate varies typically only by 2% between the 256 × 256 and 512 × 512
resolutions, the convergence of the 256 × 256 computations has been judged to be
sufficient and all the results presented in this paper have been obtained with this
resolution.

4. Three-dimensional instabilities of the columnar vortex pair
4.1. Symmetry of the eigenmodes

The normal modes separate into two classes with distinct symmetries in the y-
direction: symmetric modes whose velocity and density fields verify the following
symmetries

[ux, uy, uz, ρ
′](x, y) = [ux,−uy, uz, ρ′](x,−y), (4.1)

and antisymmetric modes with the inverse symmetries

[ux, uy, uz, ρ
′](x, y) = [−ux, uy,−uz,−ρ′](x,−y). (4.2)

This decoupling between normal modes arises because the basic state (2.3) has the
symmetries (4.1). More physically, antisymmetric and symmetric modes correspond
to antisymmetric and symmetric distortions of the two vortex axes with respect to the
middle plane y = 0.

In the homogeneous case (Fh = ∞), a detailed characterization of the three-
dimensional instabilities of the Lamb–Chaplygin vortex pair has been given by
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Billant, Brancher & Chomaz (1999). In this study, both the symmetric and antisym-
metric modes have been systematically determined by enforcing the symmetry on the
perturbation in two separate sets of numerical simulations. This study recovered the
well-known long wavelength Crow instability, which is symmetric, and the antisym-
metric elliptic instability recently observed experimentally by Leweke & Williamson
(1998). In addition, a symmetric elliptic instability as well as oscillatory bulging insta-
bilities with symmetric and antisymmetric configurations have been found. Among all
these instability branches, the antisymmetric elliptic instability possesses the largest
growth rate. In the present study, no attempt has been made to systematically de-
scribe all the instability branches as done for Fh = ∞. More specifically, only the
dominant branch will be presented, i.e. no symmetry will be imposed on the pertur-
bation and, furthermore, for each group of dimensionless numbers {Fh, Re, Sc}, only
the branch possessing the largest growth rate over all vertical wavenumbers kz will
be studied. The latter mode is of major interest since it is expected to dominate the
evolution in a real experiment. For Fh = ∞, this dominant mode is the antisymmetric
elliptic mode, but, even if no symmetry has been enforced to the perturbations, all
the simulations carried out exhibit a dominant antisymmetric mode independently
of {Fh, Re, Sc}. However, its structure and its physical mechanism changes with Fh.
The symmetric Crow instability, bulging oscillatory instabilities and symmetric elliptic
instability, which exist for Fh = ∞, turn out to be subdominants for all the {Fh, Re, Sc}
investigated. Stratification effects on these instabilities will therefore not be discussed
in the present paper.

4.2. Growth rate

In figures 1(a) and 1(b), we plot the growth rates of the leading eigenmode as a
function of the vertical wavenumber kz for {Re = 10 000, Sc = 1} and for Froude
numbers in the range 0.033 < Fh < 0.2 (figure 1a) and 0.2 < Fh < ∞ (figure 1b). At
this high Reynolds number, the flow may be considered as inviscid in the range of
vertical wavenumber investigated. These results will thus allow us to test the inviscid
and non-diffusive theory of part 2. Note that the coordinate scales are not the same
for the two plots. For ease of comparison, the curve for Fh = 0.2 has been included
in both figures.

In the homogeneous case, Fh = ∞ (figure 1a), the growth rate does not decrease
at large wavenumber but asymptotes to an approximately constant value. Two maxi-
mums, with almost the same growth rate value, are noticeable on this curve (figure
1a). At low wavenumber, Billant et al . (1999) have shown the existence of an anti-
symmetric oscillatory bulging instability for Fh = ∞. As discussed in the previous
section, its maximum growth rate is always lower than the antisymmetric elliptic
instability, even when the Froude number is decreased. Thus, this oscillatory instability
branch is not represented in figure 1(a) and will not be considered further. Decreasing
the Froude number to Fh = 1 barely alters the growth rate curve (figure 1a). However,
as the Froude number is further decreased to Fh = 0.33 and then to Fh = 0.25,
the maximum growth rate and the associated wavenumber markedly decrease by
a factor of two. Stratification effects are thus stabilizing, i.e. the growth rate of
three-dimensional instabilities observed in homogeneous fluid is reduced. Such a
stabilizing effect has been also reported by Potylitsin & Peltier (1998) in their study
of weak stratification effects on columnar vortex arrays. This is in agreement with
the intuitive idea that stratification effects stabilize two-dimensional flows against
three-dimensional disturbances by inhibiting vertical motions. Yet, when the Froude
number is further decreased below 0.2 (figure 1b), the stabilizing trend is halted and
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Figure 1. Growth rates as a function of vertical wavenumber kz for {Re = 10 000, Sc = 1}.
(a) 0.2 6 Fh 6 ∞. (b) 0.033 6 Fh 6 0.2.

even reversed. Indeed, it can be seen that the growth rate curves for Fh = 0.2 and
Fh = 0.25 are almost superposed, except at low and high wavenumbers. When the
Froude number is decreased from Fh = 0.2 to Fh = 0.033 passing by 0.15, 0.1 and
0.05, the maximum growth rate first slightly re-increases and then remains constant.
It is also particularly noteworthy that the stability curves are shifted to higher and
higher wavenumbers as Fh is decreased. Physically, this means that the timescale of
the instability remains constant while the preferred vertical scale becomes smaller and
smaller when Fh is decreased.

For small wavenumbers, these instability branches could not be followed because of
the presence of a subdominant oscillatory instability. Therefore, the small wavenumber
region is masked, but for comparison with the theory (§ 5), the growth rate for Fh 6 0.2
has been extrapolated linearly to zero as kz → 0 as shown by dashed lines in figure
1(b). In contrast, for Fh > 0.25 (figure 1a), a low-wavenumber instability cutoff seems
to occur for a non-zero wavenumber if the instability branches are extrapolated down
to zero growth rate.

The existence of two distinct regimes is clearly demonstrated in figures 2(a) and
2(b). In these figures, the maximum growth rate σmax and the associated wavenumber
kz max determined from figure 1 are presented as a function of the inverse Froude
number for this set of Reynolds–Schmidt numbers together with the two other
sets, {Re = 1000, Sc = 1}, and {Re = 200, Sc = 637}, which will be discussed
below. Focusing our attention on the open circle data points that correspond to
{Re = 10 000, Sc = 1}, the initial decrease of σmax and kz max clearly identifies a first
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Figure 2. (a) Wavenumber kz max and (b) growth rate σmax of the fastest growing perturbation as
a function of the inverse Froude number. ◦, {Re = 10 000, Sc = 1}; �, {Re = 1000, Sc = 1};�, {Re = 200, Sc = 637}. In (a), the error bars indicate the indeterminacy on the estimation of kz max
resulting from the discretization of kz . The regimes labelled Elliptic and Zigzag indicate the regions
where the instability is of elliptic type and of zigzag type, respectively.

regime associated by continuity to the elliptic instability for Fh = ∞, and a second
regime where the instability is of zigzag type as will be shown in § 5. In this second
regime, kz max is growing with 1/Fh and σmax is almost constant.

Weak dissipation effects have been treated by performing a similar set of compu-
tations for Re = 1000, the Schmidt number being the same as before, Sc = 1 (figure
3). As in figure 1, only the dominant instability branches are shown in figure 3. The
growth rate curves exhibit essentially the same trend and profile as in figure 1. How-
ever, because viscosity has a higher stabilizing effect on large wavenumbers than on
small wavenumbers, these growth rate curves are unevenly lowered when compared
to the Re = 10 000 case. For Froude numbers Fh > 0.1, for which the wavenumber
of maximum amplification is lower than 6, the growth rate is only slightly lowered
by viscous effect. In contrast, for lower Froude numbers (Fh 6 0.05), the growth rate
attenuation is more and more pronounced as Fh decreases, owing to the shift of the
growth rate curves towards large wavenumbers. These trends are better seen in figures
2(a) and 2(b). σmax and kz max follow the same evolution as in the nearly inviscid case
discussed previously, the only differences being the viscous damping of the growth
rate together with a decrease of kz max at small Fh (large kz max).

A third set of parameters {Re = 200, Sc = 637}, which are typical of the laboratory
conditions (part 1), have been investigated to compare the numerical results with
experimental measurements. In constrast with the two other cases, the Schmidt
number has been set to the value Sc = 637, characteristic of salt-stratified water. The
growth rate curves are not shown for the latter set of Reynolds–Schmidt numbers
but their main characteristics, i.e. the maximum growth rate σmax and the associated
wavenumber kz max as a function of the inverse Froude number, are also summarized
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Figure 3. As in figure 1, except Re = 1000.

in figures 2(a) and 2(b). Once again, two distinct regimes, Fh 6 0.2 and Fh > 0.25, can
be identified on the low Re curve. The viscous damping is now clearly noticeable on
the curve of maximal growth rate for every Froude number (figure 2b). This effect
increases dramatically as Fh decreases, since kz max increases with 1/Fh. σz max even
drops to negative value for Fh smaller than approximately 0.06–0.07. However, the
most amplified wavenumber is almost unaffected by diffusion.

In summary, it is obvious from figures 1, 2 and 3 that stratification has different
effects above and below Fhc = 0.2–0.25. This transitional regime is independent of the
Reynolds and Schmidt numbers investigated. For Reynolds and Schmidt numbers
approaching the inviscid limit {Re = 10 000, Sc = 1} and when Fh 6 0.2, the maximum
growth rate remains constant as Fh is decreased and the wavenumber of maximum
amplification increases in inverse proportion to the Froude number. This striking
behaviour is not observed for Fh > 0.25, for which stratification tends to stabilize
the dominant three-dimensional instability observed in the homogeneous problem.
We shall see now that this transition corresponds to a change of the destabilizing
mechanism associated with a modification of the spatial structure of the unstable
mode from elliptic to zigzag type.

4.3. Eigenmode in the elliptic instability region

The structure of the mode in the elliptic region for Fh = ∞ > Fhc and Re = 1000 is
shown in figure 4 in terms of its spatial distribution of vertical vorticity and velocity
components in the horizontal plane. Only the central region of the computational
domain has been represented since the perturbation is localized. The wavenumber
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(a) ωz (b) ux

(d ) uz(c) uy

Figure 4. Elliptic instability: (a) contours of real vertical vorticity ωz , (b) real velocities ux and
(c) uy and (d) imaginary vertical velocity uz in the horizontal plane for Fh = ∞, kz = 4.75 and
Re = 1000. Only a domain of size 3× 3 is shown while the original computational domain is 9× 9.
The same contour interval has been used for each velocity component. The contour interval for
ωz is 10 times larger than the one for velocity components. Shaded areas are regions of negative
values. The dashed circle indicates the boundary r = 1 of the dipole and the dashed line represents
the middle plane between the two vortices of the pair. At infinity, the basic flow is from left to right.

kz = 4.75 corresponds to the first growth rate maximum for Fh = ∞ in figure 3(a).
Without loss of generality and since the instability is not oscillatory, the horizontal
components of velocity (ux, uy) and the vertical vorticity ωz of the eigenmode have
been made purely real by multiplication with an appropriate phase factor. With this
choice for the phase, the vertical velocity uz is purely imaginary. Since this instability
in the homogeneous case has been studied in detail by Billant et al . (1999), we shall
keep our remarks as brief as possible and only recall its main characteristics. The
perturbation velocity field (figure 4b, d) verifies the symmetry (4.2), meaning that
this mode is antisymmetric. The vertical vorticity contour map consists of a dipole
perturbation nested in each vortex core of the pair (figure 4a). Note that the vertical
vorticity ωz is zero outside the circle r = 1 because the basic state (2.3) is potential
for r > and perturbations should remain potential there in the inviscid limit. Such a
structure corresponds to azimuthal wavenumber m = ±1 with one radial node within
each vortex core. If this perturbation were superposed with a finite amplitude to the
basic state, it would be seen that this instability distorts the inner part of each vortex
of the pair: the inner core of the upper vortex being shifted up and to the left while
the lower one is shifted up and to the right. The outer vortex parts are moving in the
opposite directions. This instability manifests itself, therefore, by an antisymmetric
bending of the vortex cores of the pair. As first shown experimentally by Thomas &
Auerbach (1994) and Leweke & Williamson (1998), this instability is characteristic of
an elliptic instability (Widnall, Bliss & Tsai 1974; Moore & Saffman 1975; Tsai &
Widnall 1976; Pierrehumbert 1986; Baily 1986; Waleffe 1989) of each vortex of the
pair. In the present case of the Lamb–Chaplygin vortex pair, Billant et al . (1999) have
given further evidence demonstrating its relation to the elliptic instability. Moreover,
a similar mode but with the opposite symmetry is also unstable (Billant et al . 1999).
However, its growth rate is always lower than the antisymmetric one explaining why
it does not appear in the present computations where no symmetry has been imposed
on the perturbation. In Billant et al . (1999), it has been shown also that the second
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Figure 5. As in figure 4 except Fh = 0.05, kz = 12 and {Re = 1000, Sc = 1}. As in figure 4, the
same contour interval has been used for each velocity component. The contour interval for ωz is 10
times larger than the one for the velocity components.

maximum in the growth rate curve for Fh = ∞ (figures 1a and 3a) is related to
the apparition of a second elliptic eigenmode still made of azimuthal wavenumbers
m = ±1 but with two radial node lines inside each vortex of the pair instead of one.
This increase in the complexity of the radial structure as kz increases is typical of the
elliptic instability of confined vortex (Moore & Saffman 1975; Tsai & Widnall 1976;
Robinson & Saffman 1984).

4.4. Eigenmode in the zigzag instability region

The spatial structure of the mode in the zigzag region for Fh = 0.05 and {Re =
1000, Sc = 1} at the most amplified wavenumber kz = kz max = 12 (figure 3b), is
displayed in figure 5. This mode is again antisymmetric since its velocity field verifies
the symmetry (4.2). However, its spatial structure differs from the elliptic mode
(figure 4). The vertical vorticity ωz (figure 5a) consists of an oblong central negative
perturbation slightly shifted towards the front of the dipole and accompanied with
two regions of positive vertical vorticity on each side. If this perturbation were added
to the basic flow, it would be seen that this instability translates the whole vortex pair
in the negative y-direction and slightly rotates it anticlockwise. Conversely, if the sign
of the perturbation is reversed (i.e. half a wavelength away in the vertical direction),
the vortex pair is translated in the positive y-direction and rotated clockwise. Unlike
the elliptic mode, this instability mode hardly distorts the internal structure of the
two-dimensional dipole. Therefore, in contrast with the elliptic instability which bends
each inner vortex core in the opposite direction to its outer part, the zigzag instability
bends and twists the vortex pair as a whole. This behaviour agrees qualitatively with
the experimental observations of the zigzag instability (part 1).

A further striking difference with figure 4 is that the magnitude of the vertical
velocity (figure 5d) is very small compared to those of the horizontal velocity compo-
nents (figures 5b and 5c). In order to highlight this feature, the same contour interval
has been used for each velocity component in both figures 4 and 5. In § 5, it will
be shown that the characteristics of the zigzag mode correspond precisely to the
analytical predictions of part 2.
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(a) Fh = 0.033 (b) 0.1 (c) 0.15

(d ) 0.2 (e) 0.25 ( f ) 0.33

Figure 6. Transition from zigzag to elliptic instability at the vertical wavenumber of maximum
growth kz max for increasing Froude numbers for {Re = 1000, Sc = 1}: contours of vertical vorticity
in the horizontal plane. (a) Fh = 0.033, kz max = 15; (b) Fh = 0.1, kz max = 6.5; (c) Fh = 0.15, kz max = 4;
(d) Fh = 0.2, kz max = 3; (e) Fh = 0.25, kz max = 3; (f) Fh = 0.33, kz max = 3.75. For other details see
the legend of figure 4.

4.5. Transition from the elliptic to the zigzag instability as Fh is varied

We next turn our attention to the evolution of the most unstable mode when the
Froude number is varied in order to characterize the transition between the two
different eigenmodes described previously. For brevity, only the spatial distribution
of the vertical vorticity component will be presented and discussed. Figure 6 shows
the vertical vorticity at the wavenumber of maximum amplification for increasing
Froude numbers in the range [0.033, 0.33]. At low Froude numbers, Fh 6 0.2 (figure
6a, c), these contour maps are all very similar to figure 5(a) where the zigzag mode
for Fh = 0.05 was presented. However, as Fh is increased, a dipole perturbation
gradually forms on each side of the oblong central perturbation. Between Fh = 0.2
and Fh = 0.25 (figure 6d, e), these dipoles abruptly strengthen. Then, for Fh = 0.33
(figure 6f), the oblong central perturbation is considerably weakened. At this Froude
number the eigenmode has almost attained the spatial distribution observed for
Fh = ∞ (figure 4a).

Besides these topological modifications, the main change when the Froude number
is varied concerns the magnitude of the perturbation vertical velocity uz and density
ρ′. This is illustrated in figure 7 where the ratios (ū2

z/(ū
2
x + ū2

y))
1/2 and (ρ̄′2/(ū2

x + ū2
y))

1/2

of the fastest growing disturbance have been plotted as a function of the inverse of
the Froude number for all the sets of Reynolds–Schmidt numbers investigated. For
Fh 6 0.2, the main feature is that the vertical velocity vanishes linearly as Fh → 0
(a fit by the function 2(1/Fh)

−1 is shown by a solid line in figure 7a) whereas the
density perturbation is approximately proportional to the inverse of the Froude
number (a fit by 0.44/Fh is indicated by a solid line in figure 7b). Differences between
the three sets of Reynolds–Schmidt numbers are hardly distinguishable even for the
lowest Reynolds number. Only the rightmost point for {Re = 1000, Sc = 1} differs
significantly in figure 7(b). This difference in the density perturbation amplitude for
Fh = 0.033 is entirely attributable to the fact that the most amplified wavenumber
kz max = 15 for Re = 1000 is lower than in the nearly inviscid case Re = 10 000 where
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Figure 7. (a) Ratios of root-mean-square perturbation vertical velocity to root-mean-square
perturbation horizontal velocity (ū2

z/(ū
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x + ū2

y))
1/2 and (b) root-mean-square density perturbation

to root-mean-square perturbation horizontal velocity (ρ̄′2/(ū2
x + ū2

y))
1/2 as a function of the in-

verse Froude number for the wavenumber corresponding to the fastest growing disturbance. ◦,
{Re = 10 000, Sc = 1}; �, {Re = 1000, Sc = 1}; �, {Re = 200, Sc = 637}. The solid lines fit the
points for {Re = 10 000, Sc = 1} and Fh 6 0.25. The fitting functions are 2Fh in (a) and 0.44/Fh in
(b). The horizontal dashed line in (a) marks the isotropy value 1/

√
2. The dashed curve in (b) fits

the points for {Re = 10 000, Sc = 1} and Fh > 0.33. The fitting function is 0.19F−2
h .

kz max = 21 (figure 2a). Indeed, if the density perturbation for Re = 1000 is taken
at the wavenumber kz max = 21, the difference between the Re = 1000 and Re =
10 000 curves for Fh = 0.033 is suppressed. In § 5.2, we shall show that the scalings
(ū2
z/(ū

2
x + ū2

y))
1/2 ∝ Fh and (ρ̄′2/(ū2

x + ū2
y))

1/2 ∝ 1/Fh for Fh 6 0.2 are fully consistent
with the asymptotic analysis of part 2. For Fh > 0.2, the two preceding scaling laws
break down. An abrupt transition occurs near Fh = 0.25 when approximate isotropy
between the vertical component of velocity and the horizontal ones is achieved,
(ū2
z/(ū

2
x + ū2

y))
1/2 ≈ 0.7 ≈ 1/

√
2 (this value is indicated by a dashed dotted line in

figure 7a). When Fh is increased above 0.25, the latter ratio remains close to the
isotropy value whereas the density perturbation goes to zero like F−2

h as shown by
the dashed curve in figure 7(b).

A striking feature is that the transition between the two instability modes occurs
continuously as seen by the gradual change of the eigenmode (figure 6). In addition,
the wavenumber of maximum amplification varies continuously, without any jump
(figure 2a). There is therefore a short range of Froude numbers Fh ≈ 0.2–0.25 where
the instability is of mixed type. In this transition scenario, it is worth pointing out that
there is no coexistence and competition between two types of instability, one being
most unstable for low Froude numbers and the other one for high Froude numbers.
It is rather a complete metamorphosis of the nature of a single instability when the
Froude number is varied. A feature confirming this view is that two extrema are not
seen in the growth rate curves near the transition for Fhc = 0.2–0.25 (figure 1a, b),
as one would expect if two instabilities with distinct preferred vertical wavenumbers
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(a) Fh = 0.15 (b) 0.2

(c) 0.25 (d ) 0.33

Figure 8. Transition from zigzag to elliptic instability at low vertical wavenumbers having the
same growth rate σ = 0.417 ± 0.021 for {Re = 1000, Sc = 1}: contours of real vertical vorticity
in the horizontal plane: (a) Fh = 0.15, kz = 2.33; (b) Fh = 0.2, kz = 1.75; (c) Fh = 0.25, kz = 1.5;
(d) Fh = 0.33, kz = 2. Like in figure 6, a transition from the zigzag mode at Fh = 0.15 (a) to the
elliptic mode at Fh = 0.33 (d) can be seen. For other details, refer to the legend of figure 4.

were competing. This idea is also strongly reinforced by the fact that all wavenumbers
seem to be affected by the change in spatial topology of the eigenmode around the
same Froude number values Fhc = 0.2–0.25, as demonstrated by figure 8. Like figure
6, this figure shows the vertical vorticity contour maps as a function of Fh around
the critical value but now at wavenumbers lower than kz max and corresponding to the
same growth rate (σ ≈ 0.42). We see that the vertical vorticity for Fh = 0.33 (figure
8d) and higher (not shown) are of the elliptic type whereas for Fh = 0.15 (figure
8a) and lower (not shown), the instability mode is of the zigzag type. The modes
for Fh = 0.2 (figure 8b) and Fh = 0.25 (figure 8c) are mixed modes corresponding
to the continuous transition between the zigzag and elliptic instabilities. A transition
around Fhc = 0.2–0.25 could be identified also by looking at the eigenmodes at high
wavenumbers (not shown).

As shown in part 1, this transitional range Fhc = 0.2–0.25 for the disappearance of
the elliptic instability can be accounted for by the study of Miyazaki & Fukumoto
(1992) on the influence of stratification on the elliptic instability. For an infinite
vortex with uniform vorticity, these authors have shown that the elliptic instability is
suppressed by the stratification when N > (γ2 − ε2)1/2, where 2γ is the vorticity and
ε the strain rate. The physical explanation of Miyazaki & Fukumoto (1992) for this
criterion is summarized in part 1. Although the vortices of the Lamb–Chaplygin dipole
are of finite size and have non-uniform vorticity, this criterion can be crudely applied
by estimating the local vorticity and strain rate at the vortex centres. An expansion
of the basic streamfunction (2.3) near one vortex centre yields γ = 5.06U/R and
ε = 2.28U/R (part 1). Thus, the threshold N = (γ2 − ε2)1/2 becomes, in terms of the
horizontal Froude number, Fh = 0.22. This value is within the Froude number range at
which the transition from elliptic to zigzag instabilities occurs herein, 0.2 < Fh < 0.25.
Furthermore, the critical value Fh = 0.22 is a non-diffusive threshold and therefore
independent of the Reynolds and Schmidt numbers. This explains why the transition
occurs at the same Froude numbers for the three sets of Reynolds–Schmidt numbers
since they are all relatively large.

At this stage, we have drawn a global picture of the instability characteristics
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of the vortex pair as the Froude number is varied. Two distinct instability modes,
both antisymmetric, prevail above and below the transitional Froude number range
Fhc = 0.2–0.25. For Fh > 0.25, the instability is related to the elliptic instability and
consists of an antisymmetric bending of the inner vortex cores which distort the
horizontal structure of the basic state. For Fh 6 0.2, on the other hand, the instability
produces almost no deformation of the horizontal structure of the dipole. Rather, the
vortex pair as a whole is bent and twisted periodically along the vertical direction.
The perturbation vertical velocity is small and scales approximately as Fh, while
the density perturbation scales as 1/Fh. A prominent feature of this instability is
that the most amplified wavenumber is inversely proportional to the Froude number
whereas the maximal growth rate remains constant for large Reynolds number. In the
next section, we shall show that this instability corresponds to the zigzag instability
uncovered in parts 1 and 2.

5. Comparison with theoretical results
The goal of this section is to compare the present numerical computations to the

asymptotic calculations of part 2.
In part 2, we have demonstrated for small Froude numbers and in the inviscid

limit the existence of a long-wavelength phase instability related to the breaking of
translational and rotational invariances. A key assumption of this analysis is that
the horizontal dipole structure is only weakly perturbed so that one can describe
the vortex pair by ‘macroscopic’ or phase variables such as location and orientation
of the dipole in the horizontal plane. In the case of the zigzag instability, it turns
out that the relevant phase variables are η, the y-coordinate of the dipole along the
axis perpendicular to the initial travelling direction and φ, the angle of propagation.
Considering further that η and φ vary slowly with the vertical coordinate and with
time, and that η, φ� 1, we found by a multiple-scale perturbation analysis for small
Froude number and small wavenumber that η and φ are related by

∂η

∂t
= φ, (5.1)

∂φ

∂t
= (D + F2

h g1)F
2
h

∂2η

∂z2
+ g2F

4
h

∂4η

∂z4
, (5.2)

up to the fourth order in Fh and ∂/∂z. The coefficients D = −3.67, g1 = −56.4, g2 =
−16.1 have been exactly calculated from solvability conditions using the Lamb–
Chaplygin dipole as the basic state. When η and φ are independent of the vertical
coordinate z, the structure of the equations (5.1)–(5.2) is an immediate consequence
of the invariance group. If the dipole propagation direction is turned by an angle φ
from the x-axis, then, to first order in φ, the dipole moves along the y-axis at the
speed φ (the propagating velocity of the dipole is normalized to one). The phase
η thus increases linearly with time. In contrast, the phase φ remains constant by
virtue of momentum conservation. The vertical derivative terms in (5.2) describe
weak three-dimensional effects. Inserting three-dimensional disturbances of the form
(η, φ) ∝ exp(σt+ ikzz) yields the dispersion relation

σ2 = −DF2
h k

2
z + g2F

4
h k

4
z − g1F

4
h k

2
z , (5.3)

which is an expansion for small Froude number and small wavenumber of the exact
dispersion relation. This dispersion relation indicates that small wavenumbers are
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Figure 9. Growth rate σ as a function of Fhkz for {Re = 10 000, Sc = 1}: ∗, Fh = 0.033;
+, Fh = 0.05; �, Fh = 0.1; �, Fh = 0.15; ◦, Fh = 0.2.

always unstable since D and g1 are negative. At large wavenumbers, the second term
in the right-hand side of (5.3) is stabilizing because g2 is negative. The first two
terms in the right-hand side of (5.3) are of the form (Fhkz)

m indicating that the most
amplified wavenumber scales approximately as kz max ∝ 1/Fh since the third term is
negligible for Fh � 1. Although this wavenumber is out of the validity range of
the long-wavelength assumption, kz � 1/Fh, this observation led us to realize that if
we had carried out the expansion for an infinite number of terms, it would still be
possible to express the growth rate in the form

σ2 = f0(Fhkz) + F2
h f2(Fhkz) + F4

h f4(Fhkz) + . . . , (5.4)

where the fi terms are functions expressed as series of Fhkz . The first two terms on
the right-hand side of (5.3) correspond to the first two terms of the expansion for
small Fhkz of the function f0 in (5.4). The third term on the right-hand side of (5.3)
comes from the first term of the expansion of f2 in (5.4).

5.1. Dispersion relation

The generalized dispersion relation (5.4) indicates that the growth rate should be a
function of the single variable Fhkz when Fh → 0, i.e. σ ≈ √f0(Fhkz). This feature of
the inviscid theoretical analysis is already consistent with figures 2(a) and 2(b) where
it was clearly seen that, for the high-Reynolds-number case {Re = 10 000, Sc = 1},
the wavenumber kz max of the fastest growing perturbation is inversely proportional
to the Froude number (figure 2a) whereas its growth rate σmax is independent of the
Froude number (figure 2b). To test the self-similarity in a general way, the growth
rate curves of figure 1(b) for Fh 6 0.2 and the highest Reynolds number investigated
{Re = 10 000, Sc = 1} have been redrawn as a function of Fhkz in figure 9. It can be
seen that the collapse of the curves is satisfactory. The slight variations seen in figure
9 for Fh = 0.15 and Fh = 0.2 are thought to be mainly due to the O(F2

h ) term in (5.4).
The slight departure of the Fh = 0.033 curve is mainly attributable to viscous diffusion
since the maximum growth rate occurs at large wavenumber kz max = 21 for such small
Froude numbers. Indeed, at the most amplified wavenumber, viscous damping due to
vertical shearing is about k2

z max/Re = 0.044 while it is 0.017 for Fh = 0.05. Therefore,
this difference in viscous damping accounts for the approximate difference of 0.03 in
growth rate between the Fh = 0.033 and Fh = 0.05 curves in figure 9.

The theory predicts more than the qualitative scaling law since it provides the
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Figure 10. Comparison between the analytical growth rate given by the long-wavelength dispersion
relation (5.3) (solid lines) and numerical growth rates for {Re = 100 000, Sc = 1}. ∗, Fh = 0.033;
+, Fh = 0.05; �, Fh = 0.1; �, Fh = 0.15. The growth rate for Fh = 0.05 and higher Reynolds number
{Re = 100 000, Sc = 1} is also shown by a bold line with +. Note that the theoretical prediction
was expected to be valid only for infinitely small wavenumbers. Yet, the analytical growth rate is,
in practice, correct for kz 6 0.3/Fh.

quantitative long-wavelength approximation (5.3) of the dispersion relation. Figure
10 shows a comparison between the analytical growth rates given by (5.3) and the
numerically calculated growth rates of the zigzag instability for Fh 6 0.15. It is
seen that the asymptotic growth rates (5.3) (for which all the coefficients have been
computed exactly in part 2) match the numerical growth rates for small values of kz .
As expected, the approximation of the growth rate (5.3) is no longer valid for large
Froude numbers and wavenumbers (in practice when kz > 0.3/Fh as seen in figure
10) because our asymptotic formulation is restricted to long-wavelength disturbances
and small Froude numbers and because only the first terms of the expansion have
been computed. The variations of the slopes at the origin with the Froude number is
well predicted even for finite Froude number. A slight difference between the slopes
at the origin apparently exists but we believe that this is due to the finite Reynolds
number Re = 10 000 investigated. To check this, the Reynolds number has been
further increased to Re = 100 000 for Fh = 0.05 (bold line with + in figure 10) and it
is seen that the numerically calculated growth rates tend toward the theoretical ones.
The viscosity continues to have an effect even at high Reynolds number presumably
because of the presence of a strong gradient at r = 1 in the eigenmode vorticity (even
discontinuity as kz → 0 and Re→∞ as shown in part 2).

5.2. Zigzag eigenfunction

We now compare quantitatively the spatial distribution of the numerically com-
puted eigenmodes with those obtained asymptotically in part 2 for small Froude
numbers and small vertical wavenumbers. Figure 11 shows a full comparison be-
tween the asymptotic and numerical eigenmodes for Fh = 0.033, kz = 8.25 and
{Re = 10 000, Sc = 1}. The analytical velocity, density and vertical vorticity perturba-
tion fields are given at second order in Fhkz by

uh =
∂uh0

∂y
+ Fhkz

√−D∇×
(
∂

∂θ
(ψ0 + y)ez

)
, (5.5)
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(a) ux (b) ux

(c) uy (d ) uy

(e) uz ( f ) uz

(g) ρ′ (h) ρ′

(i) ωz ( j) ωz

Figure 11. Comparison between the numerical (left-hand panels) and theoretical (right-hand panels)
eigenmodes given by (5.5)–(5.7) for Fh = 0.033, kz = 8.25 and {Re = 10 000, Sc = 1}. (a, b) ux;
(c, d) uy; (e, f) uz; (g, h) ρ′; (i, j) ωz . The contour interval is not the same for each variable but is
identical for the theoretical and numerical contour maps: 0.725 for ux, 0.34 for uy , 0.0238 for uz , 4.47
for ρ′ and 3.32 for ωz . Only a domain of size 5× 5 is represented while the original computational
domain is 9× 9. For other details refer to the legend of figure 4.

uz = −ikzF
2
h

[
∇h ·

(
∂P0

∂y
uh0

)
− Fhkz

√−D
(
∇h ·

(
∂P0

∂θ
uh0

)
− ∂P0

∂y

)]
, (5.6)

ρ′ = −ikz

(
∂P0

∂y
− kzFh

√−D∂P0

∂θ

)
, (5.7)
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ωz =
∂∆ψ0

∂y
− Fhkz

√−D∂∆ψ0

∂θ
, (5.8)

where uh0 is the horizontal velocity of the basic state and P0 the associated pressure.
The first terms in the expressions of the horizontal velocity (5.5) and vertical vorticity
perturbations (5.8) correspond to the phase mode related to the translational invari-
ance in the y-direction. The second term in (5.5) and in (5.8) is the phase mode deriving
from the rotational invariance. The expressions (5.6) and (5.7) for the vertical velocity
uz and density ρ′ have been calculated in part 2 from the vertical momentum and den-
sity equations. The agreement between the analytical eigenmode and the numerically
computed one is near perfect (figure 11). We stress that strictly the same contour in-
terval has been taken for the numerical and theoretical contour maps. Thus, not only
the spatial structure of the eigenmodes but also the relative amplitude of each variable
are in excellent agreement. Note that the theoretical prediction is derived without any
adjustable parameter. The leading-order terms in the expansions (5.5)–(5.8) provide
the main characteristics of the eigenmode shape. These terms are all either symmetric
or antisymmetric in x. The second terms in the expansions (5.5)–(5.8) are responsible
for the slight breaking of the symmetry in x noticeable in figure 11. Of course, all terms
in (5.5)–(5.8) are either odd or even in y so that the symmetry (4.2) is indeed satisfied.

Of further interest is the evolution of the eigenmode topology as kz is increased.
For this purpose, figure 12 shows a comparison between the numerical and theoretical
vertical vorticity contour maps for Fh = 0.1 and {Re = 1000, Sc = 1} and increas-
ing vertical wavenumbers. In contrast with the previous expression of the analytical
vertical vorticity (5.8), corrections up to the third order in Froude number have been
taken into account

ωz =
∂∆ψ0

∂y
− Fhkz

√−D ∂∆ψ0

∂θ
+ F2

h k
2
z∆Ψ2. (5.9)

The additional term involving the streamfunction Ψ2 is a third-order correction that
has been calculated in part 2. This term has no simple physical interpretation, unlike
the first two terms of the expansion (5.9). The theoretical and numerical vertical
vorticity contour maps shown in figure 12 agree well. The evolution of the eigenmode
structure, in particular the apparition of negative regions on each side of the shaded
central part, as kz is increased, is predicted correctly by the theory. This is entirely
due to the third-order correction ∆Ψ2 in (5.9) which becomes increasingly important
at large wavenumbers. This agreement is remarkable since the asymptotic analysis
was not expected to be valid for such large wavenumbers. Furthermore, the analytical
eigenmode continues to be a good approximation for wavenumbers beyond the
domain of validity kz 6 3 of the long-wavelength dispersion relation (5.3). When kz is
increased, the breaking of the symmetry x→ −x becomes more apparent in figure 12.
Since Ψ2 is even in x like the first term on the right-hand side of (5.9), this symmetry
breaking is solely due to the rotational neutral mode (second term in (5.9)).

Finally, we show that the scaling of the ratios (ū2
z/(ū

2
x + ū2

y))
1/2 and (ρ̄′2/(ū2

x + ū2
y))

1/2

with Fh at the most amplified wavenumber kz max displayed on figure 7 for Fh 6 0.2
is in full agreement with those expected from the first order of the expansion (5.5)–
(5.7). At first order, the vertical velocity, density perturbation and horizontal velocity
scale like uz = O(kzF

2
h ), ρ′ = O(kz) and uh = O(1), respectively. Therefore, at the

wavenumber kz = kz max ∝ 1/Fh, it is predicted that (ū2
z/(ū

2
x + ū2

y))
1/2 = O(Fh) and

(ρ̄′2/(ū2
x + ū2

y))
1/2 = O(1/Fh) as it was indeed observed in figure 7.

In conclusion, the numerical analysis has recovered the qualitative and quantitative
characteristics of the zigzag instability predicted analytically in part 2 for small Froude
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(a) kz = 4 (e) 4

(b) 6 ( f ) 6

(c) 7 (g) 7

(d ) 8.5 (h) 8.5�

Figure 12. Comparison between the numerical (left-hand side a–d) and theoretical (right-hand side
e–h) vertical vorticity given by (5.9) for Fh = 0.1 and {Re = 1000, Sc = 1} for increasing vertical
wavenumbers. (a, e) kz = 4; (b, f) kz = 6; (c, g) kz = 7; (d, h) kz = 8.5. For other details refer to the
legend of figure 4. The theoretical prediction is satisfactory even at large wavenumbers although it
was expected to be valid only for infinitely small wavenumbers.

and wavenumbers. Qualitatively, the growth rate is self-similar with respect to Fhkz
for Fh 6 0.2. Quantitatively, the asymptotic formulation continues to provide a good
approximation of the growth rate as well as the eigenmode for finite Froude numbers,
Fh 6 0.2, and finite wavenumbers, kz 6 0.3/Fh.

6. Comparison with experimental results
In figure 13, the wavelength of the zigzag instability measured in the experimental

study (part 1) is compared with the most amplified wavelength calculated for {Re =
1000, Sc = 1} and {Re = 200, Sc = 637}. Each experimental point represents the
mean wavelength of the zigzag instability measured in one experiment as a function
of the Froude number Fh0, based on the initial propagating velocity U0 of the vortex
pair. The error bars give the minimum and maximum wavelengths participating in
the mean.
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Figure 13. Comparison between the experimental wavelength and the most amplified wavelength
as a function of the Froude number. The wavelength λ̃ is non-dimensionalized by the radius R of
the dipole. For the experimental points, the Froude number Fh0 = U0/NR is based on the initial
propagating velocity U0 of the vortex pair. N, numerical study {Re = 1000, Sc = 1}; •, numerical
study {Re = 200, Sc = 637}; �, experiments, N = 1.75 rad s−1; ◦, experiments, N = 1.70 rad s−1; �,
forced experiment, N = 1.75 rad s−1. The vertical dotted lines indicate the domains where the zigzag
instability is observed in the experiment. The vertical dashed line represents the critical Froude
number, Fh = 0.22, of inhibition of the elliptic instability derived from the criterion of Miyazaki &
Fukumoto (1992). The regimes labelled Elliptic and Zigzag indicate the regions where the instability
is of elliptic type and of zigzag type in the stability analysis. Each experimental point represents the
mean wavelength measured in one experiment. The errors bars indicate the minimum and maximum
wavelengths participating in the mean.

Despite the fact that the wavelength does not significantly vary with the Froude
number in the experiments, there is quite good agreement with the numerically
calculated most amplified wavelength. In contrast with the numerical study, the
Reynolds and Froude numbers vary together in the experiments according to Re0 =
(R2N/ν)Fh0 because the main control parameter which is varied is the propagating
velocity U0. The Reynolds number thus decreases approximately from Re0 = 400 to
Re0 = 250 when the Froude number is decreased from Fh0 = 0.21 to Fh0 = 0.13 in
figure 13. However, as far as the wavelength is concerned, this difference in Reynolds
number is not critical for the comparison since the numerical study has shown that
the most amplified wavelength does not depend on the Reynolds number. The same
is true for the Froude-number threshold between zigzag and elliptic instabilities and
there is a good agreement between the experiments and numerics (figure 13). In
the experiments, the elliptic instability develops above Fh = 0.21. Subsequently, the
resulting three-dimensional motions are observed to collapse. This distinct behaviour
has allowed us to determine a well-defined critical Froude number between elliptic
and zigzag instabilities. For the linear stability analysis, the value Fh = 0.22 obtained
from the criterion of Miyazaki & Fukumoto (1992) in § 4.5 has been indicated as
the threshold. However, it should be born in mind that the threshold is not precisely
located in the linear stability analysis since the transition is continuous in the range
0.2 < Fh < 0.25, as discussed in § 4.5. For a more precise comparison with experiments,
a full nonlinear simulation would be necessary to determine the Froude number above
which a gravitational collapse of the elliptic instability occurs.
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Figure 14. Comparison of the experimental growth rate with the maximum growth rate calculated
for {Re = 200, Sc = 637} as a function of the Froude number. For the experimental points,
the growth rate σ̃ is non-dimensionalized by U(tb)/R, where U(tb) is the propagating velocity of
the vortex pair measured at the time tb where the zigzag instability becomes visible. The Froude
number Fh = U(tb)/NR is also based on this velocity. The approximate experimental error bar is
shown on one point. •, numerical study {Re = 200, Sc = 637}; �, experiments, N = 1.75 rad s−1;◦, experiments, N = 1.70 rad s−1; �, forced experiment, N = 1.75 rad s−1.

In contrast, the zigzag instability is observed to be stabilized at low Froude number
Fh < 0.13 in the experiments, while such a stabilisation occurs for Fh < 0.06 in the
stability analysis for {Re = 200, Sc = 637}. The explanation for this difference lies in
the fact that the viscous diffusion of the basic state has been omitted in the numerical
analysis. In the experiments, the zigzag deformations begin to be visible only at
tb ≈ 35–50 s after the creation of the vortex pair so that the basic state has significantly
slowed down by viscous diffusion. When this damping is taken into account, both
thresholds agree, as shown in figure 14 where the experimental and numerical growth
rates are compared. In this plot, the experimental growth rate scaled by U(tb)/R
is represented as a function of the effective Froude number Fh = U(tb)/NR, where
U(tb) is the velocity at the time tb where the growth rate of the zigzag instability
is measured. The corresponding Reynolds number now varies from Re = 110 to
Re = 310, so that the experimental growth rate can be reasonably compared to the
{Re = 200, Sc = 637} numerical case. As seen in figure 14, there is good agreement
between the experimental and numerical growth rates. In both cases, the growth rate
decreases to zero for Fh ≈ 0.05–0.06. Therefore, when the viscous diffusion of the
basic state is taken into account in the experiments, the zigzag instability is stabilized
around the same Froude number as predicted by the stability analysis.

7. Summary and conclusions
In this paper, we have investigated the three-dimensional stability of a columnar

vertical vortex pair in a stratified fluid. This flow is a convenient experimental and
theoretical model for understanding the generic phenomenon of layering observed in
strongly stratified flows.

The present numerical study follows experimental and theoretical investigations on
the dynamics of a columnar vertical vortex pair in which a new three-dimensional
instability, called zigzag instability, has been observed and described at small Froude
numbers (parts 1 and 2). Experimentally, this instability is observed to eventually slice
the columnar vortex pair into thin horizontal layers of individual pancake dipoles.
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Such an instability is different from the three-dimensional instabilities observed in
homogeneous fluids. The theoretical study has shown that the zigzag instability is
related to the breaking of translational and rotational invariances. In agreement
with experimental observations, the analytical zigzag eigenmode generates sinusoidal
deformations along the vertical which consist of a translation in the direction per-
pendicular to the dipole travelling direction associated with a slight rotation of the
vortex pair. This theoretical approach has predicted that the growth rate should be
self-similar with respect to the variable Fhkz implying the intriguing and important
feature that the most amplified dimensional wavelength should be proportional to
U/N. Because of the dominance of viscous effects in the low-Froude-number regime,
it was not possible to definitely validate this scaling law in the experiments. One goal
of the present numerical study was therefore to confirm the asymptotic analysis and
the associated scaling law.

The most unstable modes have been determined as a function of the vertical
wavenumber for nine Froude-number values covering the range [0.033,∞] and three
sets of Reynolds–Schmidt numbers {Re = 10 000, Sc = 1}, {Re = 1000, Sc = 1},
{Re = 200, Sc = 637}. We have shown that the parameter space can be divided into
two domains depending solely on the Froude-number value. For Fh > 0.25, the most
unstable mode is due to an elliptic instability (Billant et al . 1999) whereas the zigzag
instability is dominant for Fh 6 0.2. For Fh > 0.25, stratification effects are stabilizing.
The growth rate of the elliptic instability is reduced compared to the unstratified case.
The transition between the elliptic and zigzag instabilities occurs continuously in a
short Froude-number range [0.2, 0.25]. The two instabilities never coexist, rather, there
is a metamorphosis of one instability into the other in the vicinity of Fhc = 0.2–0.25.
In the transitional region, the instability is therefore of a mixed type. The transitional
Froude-number values, Fhc = 0.2–0.25, are in good agreement with the critical Froude
number Fh = 0.22 derived from the criterion of Miyazaki & Fukumoto (1992) for the
suppression of the elliptic instability. For Fh 6 0.2, the most amplified wavenumber
varies as 1/Fh whereas the maximum growth rate is independent of the Froude
number for Reynolds and Schmidt numbers {Re = 10 000, Sc = 1} approaching the
non-dissipative limit. The corresponding perturbation vertical velocity and density
scale approximately as Fh and 1/Fh, respectively. More generally, the growth rate of
the zigzag instability is self-similar with respect to the variable Fhkz , as predicted in
the theoretical analysis.

The present numerical investigation thus fully confirms and validates the qualitative
prediction of the inviscid theoretical analysis. Quantitatively, the asymptotic formu-
lation has proved successful in predicting the characteristics of the zigzag instability.
The comparisons of the analytical dispersion relation and spatial eigenmode with
those numerically computed are very good in a surprisingly large Froude number
and wavenumber range although the asymptotic formulation assumed Fh � 1 and
kz � 1/Fh.

Viscous and molecular diffusions alter the self-similarity for the lower Reynolds and
Schmidt numbers investigated: (Re = 1000, Sc = 1) and (Re = 200, Sc = 637). As the
Froude number is lowered, viscous and diffusive effects become increasingly important
owing to the shift of the growth rate curves towards high vertical wavenumbers. A
low cutoff Froude number therefore exists.

Comparisons with experiments are also satisfactory. The wavelength measured
experimentally and the threshold between elliptic and zigzag instabilities agree with
those calculated numerically. Therefore, the numerical analysis succeeds in filling the
gap between experiment and theory.
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We have shown experimentally, theoretically and numerically that an instability can
be the mechanism responsible for the vertical decoupling of a strongly stratified flow
which was initially vertically uniform. In the inviscid limit, the selected dimensional
wavelength is proportional to U/N and is very small compared to the horizontal
lengthscale of the flow. This scaling law indicates that the wavelength becomes
thinner and thinner as the mean density gradient is increased until viscous and
molecular diffusions come into play. Since the instability is observed not to saturate
experimentally and to produce layers with a thickness equal to the initial instability
wavelength, the layer thickness will also vary as U/N. We believe that such a type
of instability and scaling law λ ∝ U/N is not specific of the vortex pair case but
will affect most flows as soon as they contain several tall interacting vertical vortices.
Applied to strongly stratified turbulence, this instability mechanism transfers energy
from large vertical scales directly to the small scale U/N without any cascade process.

Such a thin layering contradicts the hypothesis underlying the scaling analysis of
Riley et al . (1981) and Lilly (1983) where it is postulated that the vertical Froude
number Fv = U/(NLv) is small, whereas here, Fv = O(1). Scaling the equations
of motion by taking U/N as the appropriate vertical lengthscale indicates that
strongly stratified flows are not governed by two-dimensional Euler equations in each
horizontal layer.

We wish to thank Pierre Brancher who made the numerical code available and
Olivier Eiff for his careful reading of the manuscript.
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